大約是 2008 年的時候,為了 OpenStreetMap 活動,跟著 KaLUG 團購,一起買了 HOLUX M-241,當時大部分行動裝置並沒有內建 GPS,只有某些高單價的 PDA 有全球定位系統功能。相對 M-241 在當時的市場性價比很高,使用 MTK 技術,很驚訝居然到目前為止仍持續銷售。
實際使用上經歷一些技術問題
- 使用的 MTK 協定有相容問題,當初使用 mtkbabel 無法匯出,必須給點小 patch. 但是已經比其他的 logger 來的容易使用。
- 紀錄的軌跡有嚴重的漂移問題,增加了一些後製處理的困擾。
- 電池插槽容易鬆脫重置,造成裝置一直關機或重開,非常惱人。
後來又陸續買了 Garmin Dakota 20, Nokion AW100, 智慧型手機 iOS, Android 等等包含 GPS 功能的裝置來紀錄軌跡。
這篇文章分享一些個人對於衛星定位系統的理解,希望可以幫助其他朋友採購的作為參考依據。
評估要件
這幾年的 GPS 裝置的入手價格越來越低,參與 OpenSteetMap 的門檻也越來越低。有些朋友想購買新的 GPS 裝置,來紀錄踏查軌跡,到底購買的時候要考量哪些產品條件?
以下是我認為構成一個好產品的評估要件
- 準確性 (Accuracy)
- 用電量 (Power consumertion)
- 操作界面 (User interface design)
- 防水性 (Water proof)
- 耐用性 (Durability)
這些條件取決於產品定位與設計。當然,準確性是最主要的評估要件,而硬體本身就是最大的侷限,從技術面來分析,大約可以分成下面幾項
- 接收晶片 (Receiver chip)
- 無線接收 (RF design)
- 軟體/韌體設計 (Firmware)
- 輔助儀器 (Sensors)
以下逐一討論。
接收晶片 (receiver chip)
從過去 GPS Receiver Chip 通常是一棵獨立的元件,到現在行動裝置流行的市場,衛星定位系統已經逐漸變成整合進 SoC 的基本功能。衛星定位系統 (Satellite navigation) 遠在約 20,000km 以外的衛星軌道,定位訊號廣播穿送到地表後,強度約在 -125dBm to -130dBm.
在接收到衛星傳送的導航資訊之後,接收器會得到以下的資訊
- 衛星星曆 (Almanac) ,可用以計算所有的衛星大略位置,至少六天更新一次。
- 星曆表 (Ephemeris), 計算衛星位置,通常每兩小時更新一次。
- 時間與時鐘誤差資訊。
- 衛星健康狀態資訊。
- 電離層資訊。
在訊號抵達地表成功判讀前,有許多原因會造成誤差,其中天氣與量測環境是最容易影響收訊的因子
- 大氣效應 (Atmospheric Effects),訊號穿越時會受到干擾延遲,理論上 70 ns 的大氣延遲將產生約 10 公尺的殘餘誤差 (Residual error)。
- 氣候造成濕度提高、能見度下降。也會影響訊號延遲與強度。
- 多重路徑誤差 (Multipath effects)
- 星曆表 (Ephemeris) 與時間誤差
這些 RF 誤差需要再處理,像是常見的因為建築物或地面造成訊號反射誤差,可以用 Narrow Correlator Spacing 來處理,大氣效應產生的電離層誤差也可以透過韌體來做修正。
然評估晶片效能,優先考慮的是靈敏度 (Sensitivity),感度越高,越能處理微弱的訊號,在室內或遮蔽時有顯著的差異,另外新型晶片設計也可以抑制多重路徑誤差,提高準確度。
衛星系統會發出數種無線電訊號頻道,這些頻道各帶有不同的資訊。要完成定位功能,只需要 L1, L2 頻道。L1 頻道中帶有捕獲碼 aka (C/A, Coarse/Acquisition Code) 與測距碼 (P碼),若支援 L2 頻道之資料,則可計算出電離層全電子含量(Total Electron Content, TEC) 所造成的延遲,或是使用於 OPUS 等 GPS post-processing service 系統提高定位準確度。
但受到美國軍方管制,一般民用定位系統只支援 L1 (1575.42Mhz±5MHz, GLONASS 1602±8MHz)。但即便無法對 L2 解碼,民間定位系統仍可以分析載波 (carrier wave) 的方式進行即時動態測量 (Real Time Kinematic correction),估算大氣效應誤差。因應民用需求,2005 年後,新的 Block-IIR-M GPS 衛星會送出 Civilian L2 (L2C) 訊號,但要到 2016 年後 Next Generation Operational Control System (OCX) 才正式啟用。
上述系統談的是美國 NAVSTAR Global Positioning System (GPS),在 2013 年四月前,全球定位系統只支援 NAVSTAR,但現在市場已經有 Russian 的 GLONASS 系統可用。另外在 2020 年還有中國的北斗衛星導航系統、歐洲的 Galileo 系統。現在新款的晶片也可以支援 Multi-GNSS,市面上的手持產品有 Garmin eTrex 等,至於手機產品如 Qualcomm Snapdragon 400 等也同時支援 GPS 與 GLONASS.
更新頻率 (Update rate /Fix Rate),這是指從感應晶片傳來的定位頻率有多高, 通常是一秒 1 點到 10 點間 (1-10 Hz),例如 M-241 可程式化成 1 到 5Hz. 一般登山步行一秒一點很夠用,但是如果你用來紀錄賽車或無人飛行器軌跡,就會發現精度不足囉。
另外一個值得考慮的是晶片可以支援的處理頻道數量,理論上只要三個衛星就可以計算出平面定位,取得四顆衛星能取得 3D 定位。也就是說,裝置最低需要同時處理四個 L1 頻道訊號。但是在成功取得定位前,裝置必須搜索所有可能訊號,以找出最接近的衛星,在首次定位前,同時間能夠處理的衛星訊號數越多,首次定位也就越快、越省電,定位之後也能有效率的鎖定衛星訊號。以前只有美國系統,加上地表角度,天空最多同時可以看到一打以內的衛星,所以大概只需要十二組頻道。但是若加上俄國等系統,你也就需要更多的「處理頻道」。
簡而言之,處理頻道的益處是減短定位時間、減少因遮蔽失去訊號的機會、提高省電。但必須認識的是,處理頻道是很容易誤解的銷售詞彙,各家廠商定義不同。要注意產品規格上說的處理頻道是支援 L1, L2, 那些衛星系統、哪些輔助定位系統。千萬小心那些灌水的數字。
無線接收 (RF design)
除了晶片性能外,另外一個嚴重影響接收能力的是無線射頻接收設計,衛星訊號在抵達晶片前,會通過天線、射頻前端模組等,然後才會轉成中頻進到數位處理的階段。
由於全球定位系統的頻譜位於 VHF 頻段,與 ANT、電信網路、藍牙或無線網路不同,使用獨立的接收天線,在小型的裝置上常見使用平板天線 (patch antenna),專業一點的手持裝置則可能選用四臂螺旋式天線 (Quadrifilar Helix Antenna),看起來像是傳統黑金剛的大型天線,收訊效能比平板天線好。
不同的天線設計造成優劣有別的增益效果,不過技術演進使晶片感度大幅提昇,處理訊號反射誤差等等能力提高,在開闊環境效能可能十分接近,但是若是大樓林立的都市環境或樹林中,才會看出明顯差異。有些手持式衛星定位系統甚至保留外接接頭,可以外接主動式天線來提高收訊效果。例如裝於汽車上,為了避免車廂金屬屏蔽,可以拉線到車輛外面,但必須注意天線的線路會因為長度增加增加衰減。
通過天線進入射頻前端模組時又可再分成以下幾個元件來評估。
- 低噪音放大器 (Low Noise Amplifier)
- 濾波器 (Filters)
- Down Convertor.
- 時脈 (Clock)
- RF Circuit Layout.
通過天線,進入 RF Front end 後會依序進入上述元件進行訊號增強、過濾、轉換,但這些元件皆已經高度模組化,使用者很難從外觀去判斷性能差異或是進行客觀的評估,畢竟缺乏測試設備,也難以獨立的對每個元件進行測試,但是只要其中一個元件設計失誤,就會影響使用效能。特別是整合到電路板上後造成的訊號干擾問題,在在考驗製造商的工藝技術。
前提是製造商願意重視數位定位的性能。由於目前在智慧型手機,許多使用者的用途都是在室內打卡、查詢附近路徑,大部分的時候只要壟統的位置資訊即可滿足,更重要的是電話通信的訊號必須良好。也因此衛星定位的天線的優先值總是被排到最後,而且依照市場需求,外型是消費者採購的優先考量,為了配合機構設計,天線可能會移到勉強可用的位置。也因此,有些手機必須手持螢幕朝向臉部才能夠成功定位。
甚至有些產品是沒有經過嚴謹測試就上市了。像是 2012 年推出的 ASUS Eee Pad Transformer Prime,大膽採用金屬外殼,結果導致 GPS 功能無法接收訊號失效。
金屬會屏蔽電波訊號,請不要再弄清楚手機天線位置前隨便安裝金屬製造的外框阿。
軟體/韌體設計 (Firmware)
談完了基頻處理的硬體,接下來來談談韌體。全球定位系統有許多可以縮短定位時間或提高定位精準的技術,這些技術並非全部在韌體中,也可能以軟體導航實作,許多技術也需要依賴硬體的資訊才能完成。以下逐一討論
Assisted-GPS
Assisted-GPS 或 A-GPS 是第一個最容易讓人混淆的的名詞了,最基本的概念是不從衛星抓取衛星星曆 (Almanac) 與星曆表 (Ephemeris),而是透過 IP 網路或離線取得可用的星曆資料,甚至透過其他技術預先取得大致位置,再利用此粗估位置推算可見衛星,避免緩慢的猜測行為,如此就可加速第一次定位的時間。
若沒有預先快取的星曆資料,就必須等待定位時透過衛星訊號下載,如此會增長第一次定位時間。若關機一段時間,星曆資料已經過期,也必須重新下載 (cold start)。
容易令人混淆的是在電信網路協定中,除了使用 TCP/IP 最多採行的 OMA 協定 “Secure User Plane Location” (SUPL) aka Mobile Station Based 外,還有另外一種 Mobile Station Assisted, Control Plane Protocol 則是透過基地台計算行動電話位址,然後將位址資訊傳送回手機。這兩種技術是完全相反的。
除了透過電信網路的協定外,另外一種作法是網路輔助定位 (network-assisted positioning)。在 Android 的 GPS HAL 中,你也可以發現有 XTRA 支援的 API,可以透過網際網路下載星曆資料,然後再透過其他的 Geolocation 系統透過 WiFi ESSID 或 Cell ID 取得約略位址,餵回給 GPS 以加速定位速度。然而 XTRA 是 Qualcomm 的技術,其他晶片廠商各有不同的作法,如 MTK 則叫做 EPO (Extended Prediction Orbit)。在有線上資源的加持下,手機在首次定位的速度常常贏過手持式 GPS 裝置。像是 Garmin 的裝置,若你拜訪另外一個國家,它常常會只利用上次使用的快取搜尋衛星,導致非常第一次定位非常久。
協定與方式不同,但是都是透過線上網路取得星曆與粗略位置。也有產品是使用離線星曆的方式,像是我手上持有的 Nikon AW100 三防相機,就支援離線 aGPS,Nikon 的星曆只有七天,每七日得重新下載進 SD Card,並從相機選單中更新資料至衛星定位模組。
全球衛星導航增強系統 (GNSS Augmentation System)
全球衛星導航增強系統 (GNSS Augmentation System) 是利用差分全球定位系統 (Differential GPS, DGPS) 技術,簡單講是在地面設立數個參考基站,由於基站位置是固定的,因此可以透過差分改正(Deviation Correction) 推算大氣延遲、時鐘漂移 (clock drift)。這種增強系統又分為衛星式系統 (satellite-based augmentation system, SBAS) 與陸地系統 (Ground-based augmentation system, GBAS).
衛星式系統又稱為 WADGPS, wide-area DGPS,是將陸地基站的資訊再透過衛星廣播出去。其中比較知名的是歐洲 European Geostationary Navigation Overlay Service (EGNOS)、日本的 Multi-functional Satellite Augmentation System (MSAS)、美國的 Wide Area Augmentation System (WAAS),像 WAAS 為例子,可以定位到平面 1 公尺、垂直 1.5 公尺 的精確度。
由於使用的頻段一致,可以以韌體實作不需要額外的無線接收硬體,不少產品支援 WADGPS。至於陸地系統 (Ground-based augmentation system, GBAS) 使用的頻譜不同,一般民用消費性產品並不支援。
慣性導航系統 (Inertial navigation system)
另外一個有顯著差別的是慣性導航系統 (Inertial navigation system),由於定位時時常會通過林木遮蔽處或隧道等環境,此時會遺失衛星訊號,部份系統的作法是在重新取得定位前,不予紀錄。但是也有作法是利用利用輔助感應器 (Sensors) 的情報來做航位推算 (Dead Reckoning, deduced reckoning)。
一般在定位系統或智慧型手機上常可看到以下感應器
- 氣壓計 (Barometer)
- 電子羅盤/磁力感測器 (magnetic sensor)
- 陀螺儀 (Gyroscope sensor)
- 加速計 (Accelerometer)
- 記步器 (Pedometer)
- 踏頻、輪圈轉速等
這些感應器可以提供高度、方向、加速度、角速度、速度等移動資訊,透過這些資訊即可以慣性推算運動的位置。當然準確度是很可疑的,但是可以作為暫時遺失訊號的備用機制,彌補無法錄記軌跡的問題。部份民用衛星定位系統支援慣性導航功能。
其他注意事項
市面上的產品大致可以分為三類
- 記錄器 (Logger) / 手錶 (GPS Watch)
- 智慧型手機 (Smart Phone)
- 衛星導航系統 (Handheld GPS)
若要購買專門的器材,第一優先依照使用需求購買,市面產品多樣,有適合方便跑步紀錄的手錶、自行車等專用產品,產品大小對於運動類型有很大的影響,某些自行車專用可以順便紀錄踏頻、輪圈,都已經整合妥當,使用起來也比較方便。特別注意某些舊款產品能收的處理頻道較少、或是沒有數位羅盤功能,這都會造成定位較慢或不容易使用。像是 HOLUX M-241 就沒有數位羅盤,功能中的行進方向是透過軌跡計算出運動方向。
如果會進行兩天以上深山的行程,可能會進入濃霧、大雨的惡劣氣候中,而且無法當天撤退,筆者建議購買防水的手持式衛星導航系統,最好是附有四臂螺旋式天線的產品。因為在山中,必須用到衛星定位系統就是視線不良,無法透過地圖判讀與目標定位的時候。特別是天候狀況不佳、攸關性命時,更不想依賴可能進水損壞或只有特定角度收的到訊號的裝置。
若是輕鬆且避開惡劣天候的行程,手機可以取代大部分的 GPS 功能,而且性能強大,撥看地圖效率遠比傳統手持定位系統好。無論是 MTK 平台或是 Qualcomm,衛星定位功能皆已整合,Qualcomm 平台宣稱可以精準至 2 公尺 (應搭配 WADGPS) 精確度與省電比起兩三年前大幅提昇許多。但是購買時,仍須注意產品的無線接收設計,如果以性能為優先考量,就別考慮好看的金屬外殼機種吧。
使用上必須注意的是手機有數種定位方式,可以透過網路 (WiFi, Cell Id) 或是 GPS 訊號,但由於 GPS 訊號往往定位較慢且耗電,許多開發者會使用預設的網路定位方式,這會造成切換電信基地台或收到其他無線網路基地台時,產生漂移的問題,也因此我們會看到迷路的悲劇。若要導航使用,建議使用專門的軟體,像是 OruxMaps,功能強大也可以預載離線地圖,以免沒有網路可存取線上圖資系統。
除了參考本文寫的各項要點外,在購買的時候,規格上常常會寫一些令人困惑的精確度,例如 Garmin Dakota 20
<10公尺,95%、RMS、Typical,無S/A干擾下,單機定位
這是指,這個測量有 95% 的信心度,RMS 指大約有 63%-69% 是在十公尺之內的精確度。無 S/A 干擾指無美國的誤差干擾 Selective availability,這項干擾措施已經於 2000 年 5 月停止,單機定位指沒有利用 DGPS 的定位增強系統定位。這個測試應該是在開闊區域進行,若進入如在深谷中,由於收到訊號的角度太窄,更容易產生計算誤差,要小心地形所造成的誤差,不能只看表面規格。很遺憾,市場上沒有手機在規格上標明衛星定位精確度。
另外則是紀錄軌跡的精度功能,其實一般通用的 GPX (GPS Exchange Format) 檔案格式可以包含精度情報,例如定位的類型 (fix) 是 2d, 3d 還是 DGPS, 收到幾顆衛星 (SAT), 精度因子 (Dilution of precision, DOP) 等。定位時可能產生的錯誤太多,就算可以收到數顆衛星資訊,推算過程中必定產生誤差,精度因子是透過衛星的位置算出可能的錯誤範圍,藉此可以得知該軌跡點的可信賴度。
仍而一般戶外休閒用手持衛星追蹤裝置並未提供此資訊,另外在手機,如果直接使用標準程式界面,精確度也會被轉換成以公尺為距離的誤差。能夠取出完整資訊的只有 NMEA 格式,但 NMEA 需要再次被處理過才好分享給其他軟體使用。
無論是使用手機或專門導航系統,記得要多帶電池。多日行程也請攜帶紙本地圖與指北針。電子產品有可能失效,而多個小事故累積起來往往會產生悲劇。
Ref
- National Marine Electronics Association – NMEA http://www.nmea.org/
- An Introduction to GNSS | Chapter 4 – Real-Time Kinematic | NovAtel http://www.novatel.com/an-introduction-to-gnss/chapter-4-advanced-gnss-concepts/real-time-kinematic-rtk/
- Fw: [心得] 爬山不要完全相信手機地圖GPS – 看板 Hiking – 批踢踢實業坊 http://www.ptt.cc/bbs/Hiking/M.1380538573.A.408.html
- GPS explained: Position Determination http://www.kowoma.de/en/gps/positioning.htm
- GPS Satellite Detection Sensitivity – Enhancing Accuracy of GPS http://www.brighthub.com/electronics/gps/articles/42609.aspx
- GPS 接收器測試 – National Instruments http://www.ni.com/white-paper/7189/zht/
- GPS 無線標準 – National Instruments http://www.ni.com/white-paper/7139/zht/
- Re: [心得] 爬山不要完全相信手機地圖GPS – 看板 Hiking – 批踢踢實業坊 http://www.ptt.cc/bbs/Hiking/M.1380710553.A.1D6.html
- The reference for Global Navigation Satellite Systems – Navipedia http://www.navipedia.net/index.php/Main_Page
- What is the True Accuracy of the Best Handheld GPS System – Understanding the Accuracy of GPS http://www.brighthub.com/electronics/gps/articles/43189.aspx